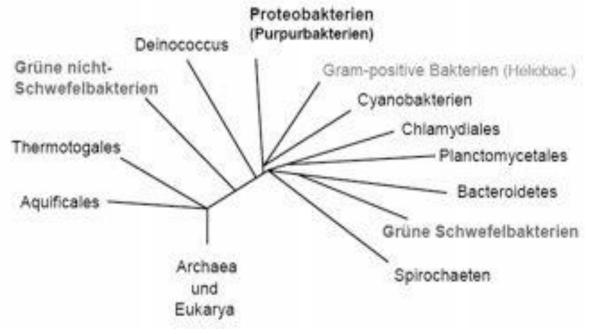


A new designed microbial fuel cell: An electricity production study by *Rhodobacter sphaeroides*

Dr. Bilge Hilal CADIRCI

Bioengineering Department Gaziosmanpasa University Tokat, Turkey



CCSCACTION TD1102-2nd Plenary Workshop PHOTOTECH: BIOSENSORS AND BIOCHIPS

HACETTEPE UNIVERSITY Department of Food Engineering Faculty of Engineering Beytepe Campus 06800 Ankara / TURKIYE

- cyanobacteria,
- proteobacteria (purple bacte
- green nonsulfur bacteria,
- green sulfur bacteria
- the Gram-positive heliobacte

Phylogenetic affiliation of phototrophic bacteria

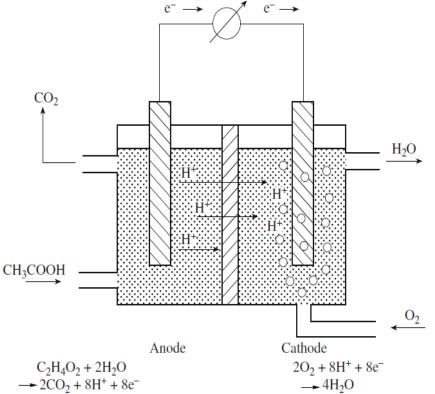
TRAINING SCHOOL ON "PHOTOTECH FOR BIOSENSORS AND ENERGY", 21-25 OCTOBER, AMARILIA HOTEL, VOULIAGMENI, ATHENS, GREECE 2013

- The purple bacteria and green nonsulfur bacteria synthesize a nonoxygen-evolving type II photosystem;
- the green sulfur bacteria and
- heliobacteria have a homodimeric type I photosystem;
- Cyanobacteria contain a type I photosystem and an oxygen-evolving type II photosystem, both of which are heterodimeric.

Physiological properties of phototrophic Bacteria

	Cyanobacteria	Purplebacteria	Green Sulfur bacteria	Green non- Sulfur bacteria	Heliobacter
PS-type	PS I and II	PS II	PSI	PS II	PSI
Pigments	Chl a (b)	BChl a, b	BChl a, c, (d, e)	BChl a, c	BCHI g
Autotrophy	+	(+)	+	+/-	-(?)
Physiology	Photoauto- Lithoauto-	Photoauto- Lithoauto- Organohetero-	Photoauto- Lithoauto-	Photoauto- Lithoauto- Organohetero-	Photoauto- Organohetero-
CO ₂ fixation	Calvin-cycle	Calvin-cycle	Reductive TCA	3OH-Propionate	None ?
Electron donor	H ₂ O	H ₂ S/ organic	H ₂ S	H ₂ / organic	Organic

Adapted from Fuchs and Schlegel 'Allgemeine Mikrobiologie'



 Solar energy reaches the Earth at the rate of the 178,000 TW of which 0.2% to 0.3% is harnessed by microorganisms

Microbial fuel cells, a type of bio-electrochemical system, directly capture electrons

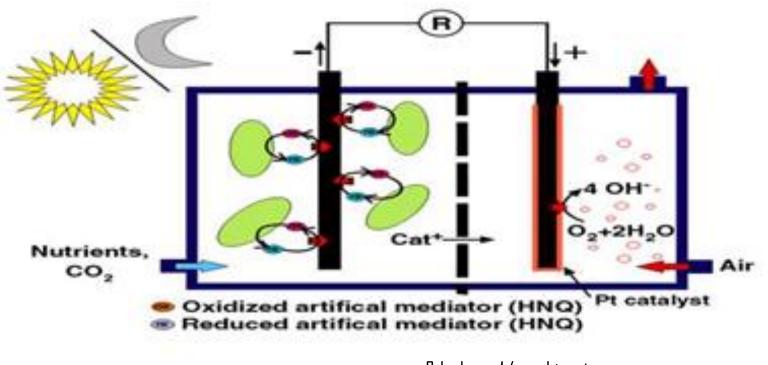
 the oxidation of a carbon source occurs at the anode while the reduction of O2 to H2O occurs at the cathode

COSCACTION TD1102 - 2nd Plenary Workshop PHOTOTECH: BIOSENSORS AND BIOCHIPS

HACETTEPE UNIVERSITY Department of Food Engineering Faculty of Engineering Beytepe Campus 06800 Ankara / TURKIYE

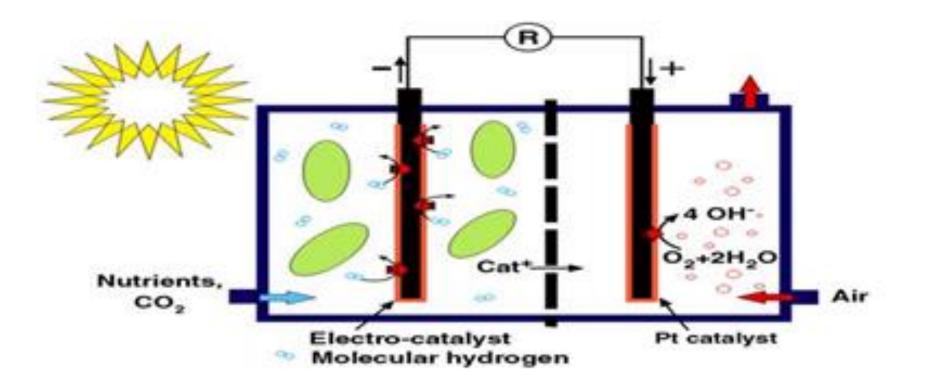
Species studied by the researchers in anode chamber.

S. no.	Species	References
1.	E. coli	Potter [14], Zhang et al. [15], Habermann and Pommer [22], Zou et al. [59], Park and Zeikus [60], Qiao et al. [61], Xi and Sun [62]
2.	Shewanella oneidensis DSP10	Ringeisen et al. [16], Biffinger et al. [18,19]
3.	Shewanella oneidensis MR-1	Manohar et al. [17], Biffinger et al. [18]
4.	Shewanella putrefaciens	Kim et al. [1], Park and Zeikus [21]
5.	Pseudomonas aeruginosa	Habermann and Pommer [22], Rabaey et al. [23–24]
6.	Geobacter sulfurreducens	Bond et al. [26], Reguera et al. [27,31], Trinh et al. [33]
7.	Geobacteraceae	Holmes et al. [29], Bond et al. [30]
8.	Geobacter metallireducens	Min et al. [32]
9.	Dessulfobulbus propionicus	Lovley et al. [53]
10.	Geothrix fermentans	Lovley et al. [54]
11.	Paracoccus denitrificans and Paracoccus pantotrophus	Rabaey et al. [55]
12.	Rhodopseudomonas palustris DX-1	Xing et al. [56]
13.	Klebsiella pneumoniae	Lewandowski et al. [57,58]



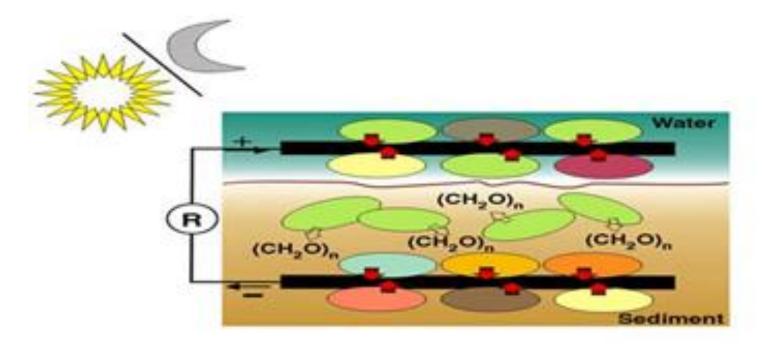
 The photosynthetic microbial fuel cell (PMFC) is a bioelectrochemical system capable of converting sunlight into electricity based on the exploitation of biocatalytic reactions within active microbial cells

Photosynthetic bacteria at the anode with artificial mediators

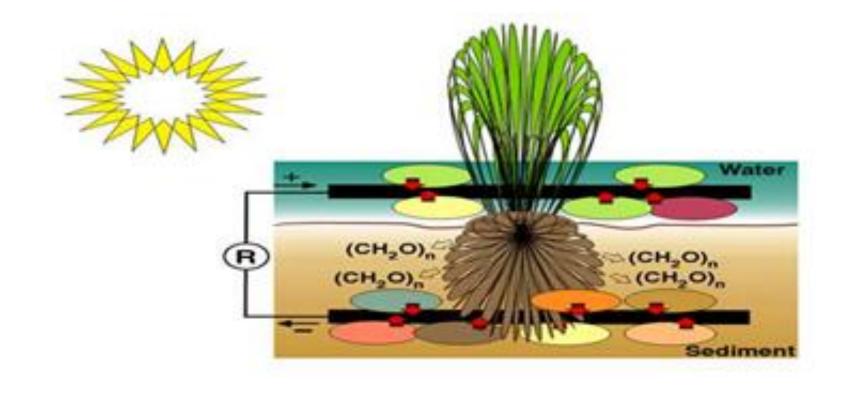


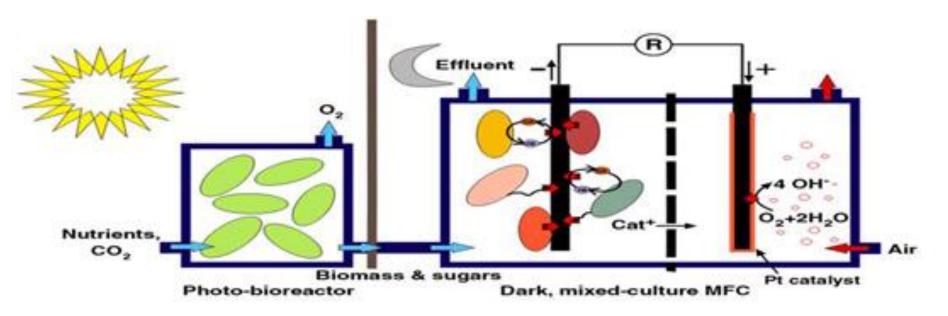
2-hydroxy-1,4-naphtoquinone

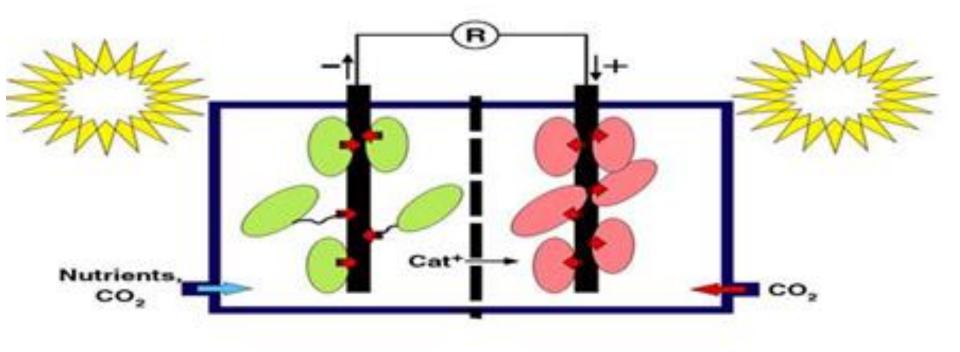
• Hydrogen-generating photosynthetic bacteria with an electrocatalytic anode

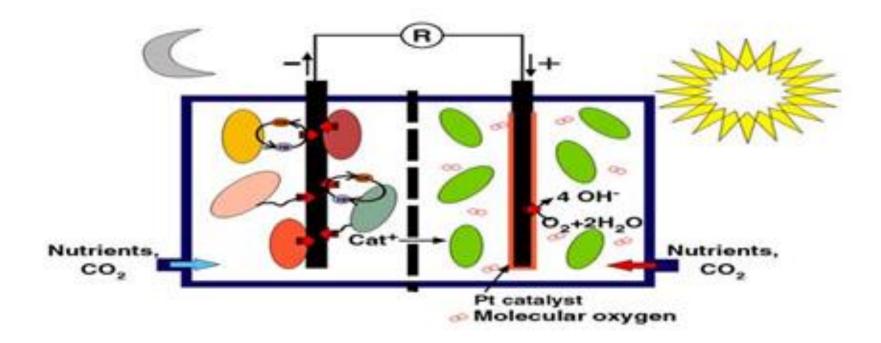


Photosynthesis coupled with mixed heterotrophic bacteria at the anode


• Synergism between phototrophic microorganisms and mixed heterotrophic bacteria in sediments


• Synergism between plants and mixed heterotrophic bacteria in sediments


• Ex situ photosynthesis coupled with mixed heterotrophic bacteria at a dark anode


• Direct electron transfer between photosynthetic bacteria and electrodes

• Photosynthesis at the cathode to provide oxygen

COSCACTION TD1102 - 2^{md} Plenary Workshop PHOTOTECH: BIOSENSORS AND BIOCHIPS

HACETTEPE UNIVERSITY Department of Food Engineering Faculty of Engineering Beytepe Campus 06800 Ankara / TURKIYE

Electrogenic yield of diverse cyanobacteria genera and mixed pond consortium.

Culture	Yield, % ¹
Pond consortium	0.304±0.009
Calothrix	0.265±0.006
Pseudoanabaena	0.165±0.008
Synechococcus	0.155 ± 0.006
Ananbaena	0.149±0.015
Phormidium	0.149±0.015
Nostoc	0.136±0.013
Lyngbya	0.130±0.016
Spirulina	0.099±0.09
Synechocystis	0.075±.008
Leptolyngbya	0.051±0.015

¹The yield is shown as a mean of three 24 h illumination cycles with a standard deviation.

References

Pisciotta JM, Zou Y, Baskakov IV (2010) Light-Dependent Electrogenic Activity of Cyanobacteria. PLoS ONE 5(5): e10821. doi:10.1371/journal.pone.0010821

Rosenbaum M., He Z., Angenent, LT. 2010, Light energy to bioelectricity: photosynthetic microbial fuel cells. Current Opinion in Biotechnology, 21:259–264

• Material and Methods:

COSCACTION TD1102-2^{md} Plenary Workshop PHOTOTECH: BIOSENSORS AND BIOCHIPS

HACETTEPE UNIVERSITY Department of Food Engineering Faculty of Engineering Beytepe Campus 06800 Ankara / TURKIYE

Thanks Dr. Lasszlo for R. sphaeroides

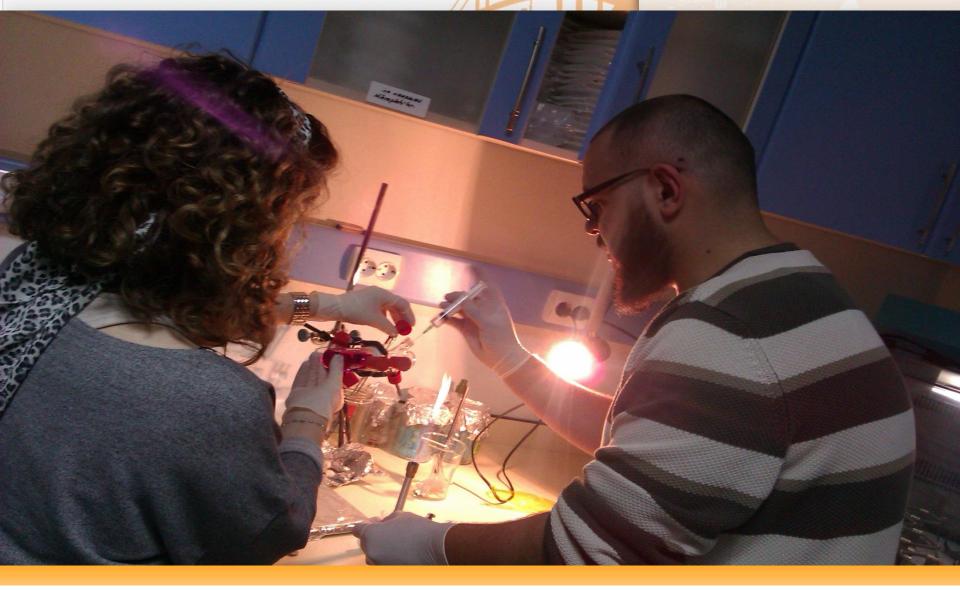
permanganate as cathodic electron acceptor

- 50 ml volume of cells
- Carbon electrode for anode
- Platine electrode for catode

Youa, S., Zhaoa, Q., Zhanga, J., Jianga, J., Zhaob, S., A microbial fuel cell using permanganate as the cathodic electron acceptor Journal of Power Sources 162 (2006) 1409–1415

North Paşa Ünit Rofies

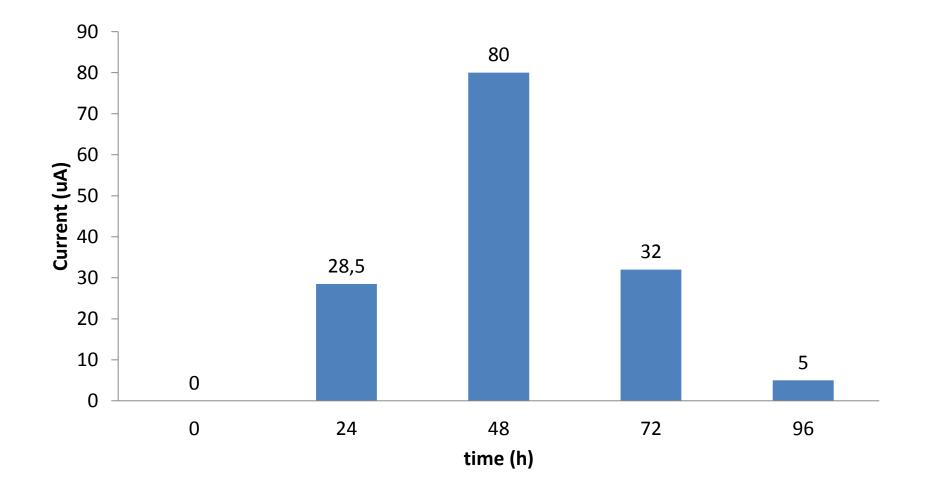
COSCACTION TD1102 - 2nd Plenary Workshop PHOTOTECH: BIOSENSORS AND BIOCHIPS



HACETTEPE UNIVERSITY Department of Food Engineering Faculty of Engineering Beytepe Campus 06800 Ankara / TURKIYE

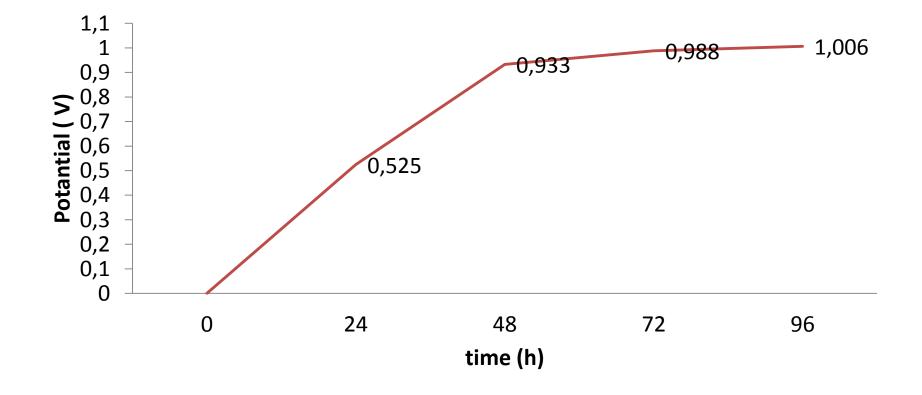
CCSCACTION TD1102 - 2nd Plenary Workshop PHOTOTECH: BIOSENSORS AND BIOCHIPS

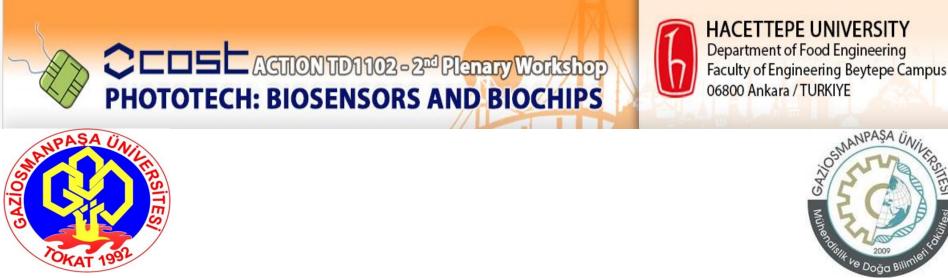
HACETTEPE UNIVERSITY Department of Food Engineering Faculty of Engineering Beytepe Campus 06800 Ankara / TURKIYE



• Results

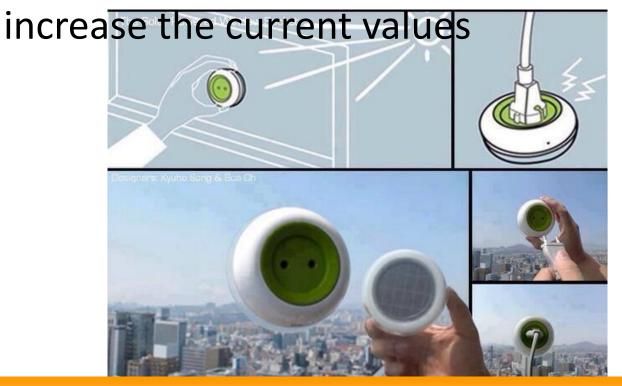
CCSCACTION TD1102-2^{md} Plenary Workshop PHOTOTECH: BIOSENSORS AND BIOCHIPS




HACETTEPE UNIVERSITY Department of Food Engineering Faculty of Engineering Beytepe Campus 06800 Ankara / TURKIYE

- High anode potential (1 volt) but low electrogenic capacity. (80 μA)
- 36.4 mA/m2 current density (2,1 cm2 cathodic surface)
- 0,07464 mW =34 mW/m2 Power density
- Pisciotta et al., (2010) have max 6 mW/m2 power density with Cyanobacteria (Lyngbia)

CCSCACTION TD1102-2^{md} Plenary Workshop PHOTOTECH: BIOSENSORS AND BIOCHIPS



HACETTEPE UNIVERSITY Department of Food Engineering Faculty of Engineering Beytepe Campus 06800 Ankara / TURKIYE

The optimization studies are continued to

CCSCACTION TD1102 - 2nd Plenary Workshop PHOTOTECH: BIOSENSORS AND BIOCHIPS

HACETTEPE UNIVERSITY Department of Food Engineering Faculty of Engineering Beytepe Campus 06800 Ankara / TURKIYE

• Thank you for your attention!!!

