The architecture of native, reconstituted and artificial light-harvesting molecular (macro-)assemblies – as revelaed by polarization spectroscopic and microscopic techniques

> Győző Garab Biological Reserach Centre, Hungarian Academy of Sciences, Szeged, Hungary

Acknowledgements

Biological Research Centre Szeged

- Petar Lambrev
- <u>Gábor Steinbach</u>
- Yuliya Miloslavina
- Krzysztof Pawlak
- István Pomozi
- Zsuzsanna Várkonyi
- Parveen Akhtar

Max-Planck Institute, Mülheim Alfred R. Holzwarth and coworkers

Institute of Botany, CAS, Beijing Chunhong Yang and coworkers

Aix-Marseille Univ., Marseille Silviu T. Balaban and coworkers

Nanyang Techn. Univ., Singapore Howe-Siang Tan and coworkers

Technical University, Berlin Gernot Renger and coworkers

In this talk:

- Light-harvesting antennae in photosynthetic organisms
- Non-random orientation of the pigment molecules linear dichroism spectroscopy
- Pigment-pigment (short-range) excitonic interactions and extended arrays of the chromophores with long-range order – circular dichroism spectroscopy techniques
- The migration of the excitation energy in LHCII 2D spectroscopy, and in larger arrays effective domain sizes
- ,Artificial chlorosome'
- Microscopic order and micromanipulation of anisotropic particles

Light-harvesting antennae

 Absorption of light and excitation energy transfer to the Reaction Center (RC)
 Increases the effective

- absorption cross-section.
- Important role in photoadaptation of photosynthetic organisms to the environment.

Antenna Complexes

multiple independent evolutionary origins

Linearly polarized light

B

LD basic principle and definition

 $P_{abs} \sim (E \cdot \mu)^2 = E^2 \mu^2 \cos^2 \alpha$

$$LD \equiv A_{\parallel} - A_{\perp} = \frac{3}{2}A(1 - 3\cos^2\varphi)$$

Also, polarized fluorescence emission

Garab, in Biophysical Techniques in Photosynthesis, Kluwer, 1996

Sample Orientation (Alignment)

Miloslavina et al. 2011 Photosynth. Res.

Orientation by gel squeezing

Orientation of membranes

Face-aligned orientation should preferentially excite transitions in the membrane plane

Edge-aligned orientation shows transitions primarily perpendicular to the membrane.

LD of magnetically aligned thylakoid membranes, trapped in gel

Garab and van Amerongen, 2009 Photosynth Res

Förster resonance interaction

Coulombic dipole-dipole interaction

•
$$V_{DA} = \frac{1}{4\pi\varepsilon_o n^2} \frac{\hat{\mu}_D \hat{\mu}_A}{R_{DA}^3} - 3 \frac{(\hat{\mu}_A \hat{R}_{DA})(\hat{\mu}_D \hat{R}_{DA})}{R_{DA}^5}$$

- The rate of energy transfer depends on the mutual orientation of the donor (D) and acceptor molecules (dipoles)
- $k_{DA} = \frac{2\pi}{\hbar} |V_{DA}|^2 J_{DA}$
- $J_{DA} = \int_0^\infty f_D(\lambda) \varepsilon_A(\lambda) \lambda^4 d\lambda$

The non-random orientation of the chromophores / pigment molecules (dipoles) appears to be a universal property in photosynthetic system - it has a functional role in determining the excitation energy migration

Circularly polarized light

Physical origins of CD

Molecular charge motions induced by light

Cantor C.R. & Schimmel P.R., Biophysical Chemistry, 1980, Freeman & Co.

Excitonic coupling

Cantor C.R. & Schimmel P.R., Biophysical Chemistry, 1980, Freeman & Co.

$$\Re_{\pm CD} = \pm 1.7 \times 10^{-5} \nu_0 \mu^2 R(\mathbf{r} \cdot \mathbf{d}_2 \times \mathbf{d}_1)$$

Short-range, dipole-dipole-interactions

see also Garab, 1996 in Biophysical Techniques ...

In large, densely packed ordered, so-called psi-type aggregates the electric field at any point is the superposition of the incident electric field and the sum of the fields produced by all oscillating dipoles - thus the CD is more complex, and is an attributum of the entire, highly organized macroaggregate (or the chiral macrodomains)

$$E_{dipole_{i}} = 4\pi k^{2} \Gamma(\mathbf{x}, \mathbf{x}') \cdot \mathbf{\mu}_{i}$$

$$E(x) = E_{0}(x) + \sum_{i} E_{dipole_{i}}(x)$$

$$\Gamma(x, x') = (3\hat{\mathbf{r}}\hat{\mathbf{r}} - 1) \frac{e^{ikr}}{4\pi k^{2}r^{3}} - (3\hat{\mathbf{r}}\hat{\mathbf{r}} - 1) \frac{ie^{ikr}}{4\pi kr^{2}}$$

$$+ (1 - \hat{\mathbf{r}}\hat{\mathbf{r}}) \frac{e^{ikr}}{4\pi r} - \frac{1}{3k^{2}} \delta^{3}(r)$$

$$\Gamma(x, x') = (3\hat{\mathbf{r}}\hat{\mathbf{r}} - 1) \frac{e^{ikr}}{4\pi k^{2}r^{3}} - (3\hat{\mathbf{r}}\hat{\mathbf{r}} - 1) \frac{ie^{ikr}}{4\pi kr^{2}} + (1 - \hat{\mathbf{r}}\hat{\mathbf{r}}) \frac{e^{ikr}}{4\pi r} - \frac{1}{3k^{2}} \delta^{3}(r)$$

Keller and Bustamante, 1986, J Chem Phys See also Garab 1996; Garab and van Amerongen, 2009 – and the references therein

FIGURE 2 Geometry for the psi-type CD calculations: (a) 27 uniaxial polarizable axes with only *xy* components are situated on the cubic lattice points and each layer is twisted an angle, θ , which determines the pitch of the model system. *d* is the distance between the polarizable groups on each coordinate. Each polarizable axis represents the volume of d^3 . Therefore, the volume which these 27 polarizable axes represent is $(3d)^3$; (b) top view of (a). The angle between the polarizable axes of adjacent layers is θ .

FIGURE 3 The CD spectra of aggregates with different sizes: The pitch and the chromophore density are the same for both aggregates, which are 300 nm and 2 chromophores/nm³, respectively. (1) The solid line: volume = 40^3 nm³; (2) the dashed line: volume = 200^3 nm³.

CD spectra of thylakoid membrane pigments at different levels of the structural hierarchy

Garab (1996) In: Biophysical Techniques in Photosynthesis, Garab and van Amerongen, 2009, Photosynth. Res.

B

Boekema&Dekker; Barber

CD and Magnetic CD

- MCD is the CD induced by magnetic field
- MCD is not affected by
 - supramolecular organization
 - orientation of the sample
 - differential scattering

Thus, an an ,internal standard', shows that psi-type CD is not an optical artefact.

Miloslavina et al. 2011

The effective (functional) domain size

Fluorescence decay kinetics of solubilized LHCII trimers (exc. 632 nm, detected 682 nm)

Fluorescence decay kinetics of LHCII macroaggregates in the presence of different concentrations of PPQ (phenyl-*p*-benzoquinone) (exc. 632 nm, detected 682 nm)

Lambrev et al. BBA 2011

Table 2. Apparent quenching rates K_{Q} and calculated domain sizes N in isolated LHCII.

Quencher	LHCII type	<i>К_Q</i> (М ⁻¹ ps ⁻¹)	N	Unit
PPQ	Aggregates (Bio-beads)	97.6	30	trimers
	Lamellar macroaggregates	83.0	25	trimers
	Aggregated LHCII monomers	47.9	31	monomers
	Trimers	3.3	3	monomers
	Monomers	1.5		
DNB	Aggregates (Bio-beads)	3.0	15	trimers
	Lamellar macroaggregates	4.9	25	trimers
	Trimers	0.2		

Sensitivity of excitonic interactions to minor changes in the protein scaffold

Light-induced reversible reorganizations in the chiral macrodomains of thylakoid membranes

Garab et al. 1988, Biochemistry, Barzda et al. 1996 Biochemistry

Quasi-linear light intensity dependence of the CD changes in thylakoids

Barzda et al. Biochemistry 1996

Thermo-optically induced reversible reorganizations in lamellar aggregates of LHCII

Simidjiev et al. Anal Biochem 1997, Cseh et al. 2005 Photosynth. Res.

Garab and Hind, unpublished

STEM of LHCII after preillumination (3 min 2000 μE)

STEM of LHCII in the re-dark (10 min after preillumination)

G. Hind, J. Wall, Zs. Várkonyi, A. Istokovics, P. Lambrev, G. Garab – Plant&Cell Physiol 2014

CD is a sensitive probe of the (dynamic) molecular architecture of complexes, and of their macroarrays

CD of excitonic dimers. Solid line – sum (isotropic) CD. Dashed lines – individual excitonic components. Left – monomers at 15°. Right – monomers at 75°.

Lambrev and Garab-based on van Amerongen et al. Photosynthetic Excitons, 2000, World Sci

CD and ACD of LHCII aggregates

ACD of chloroplast membranes

Miloslavina et al. 2011 Photosynth. Res. 111:29-39

ACD is a (novel) tool to reveal the origin of excitonic interactions in photosynthetic organisms

Light-Harvesting Complex II

Liu et al. 2004 Nature

K Wells, Z Zhang, PH Lambrev, G Garab and H-S Tan Phys Chem Chem Phys 2014

Modelling of the 2DES data

Model scheme

Pigment clusters in LHCII

Simulated spectra

- The time-dependent 2D spectra are fitted with a spectro-temporal model
- The modelling results reveal exciton state energies and rate constants of energy transfer
- Simulated 2D spectra reproduce very well the measured ones at all T_w
- Exciton states can be assigned to actual pigments in the structure
- The first experimentally derived model detailed enough to disentangle the complex energy pathways in LHCII (between chl-b and chl-a)

2D spectroscopy is an efficient tool to map the energy migration pathways

General Scheme of DP-LSM

Artificial chlorosome

2

Orientation angles of the dipoles with respect to the long axes of the rods:

Q_x 43°±8 (SE:5.6)
 Q_y 37°±7 (SE:0.42)
 B_x 39°±4 (SE:0.73)

Chappaz-Gillot et al. 2011 JACS

Birefringence of chloroplasts

0.3

0

-0.3

Transmission

LB, linear birefringence Garab et al. 2005. Eur. Biophys. J.: Steinbach et al SPIE Proc 2005

Fluorescence I

Values of LB (χ) along x

Garab et al. 2005, Eur. Biophys. J.

Orientation (and rotation) of chloroplasts by (changing the plane of) linearly polarized beam of a laser tweezer

Garab G, Galajda P, Pomozi I, Finzi L, Praznovszky T, Ormos P, van Amerongen H. 2005 Eur Biopys J