# Functional reconstitution of photosynthetic reaction centres in polymersomes

<u>Francesco Milano</u>, Rocco Roberto Tangorra, Omar Hassan Omar, John Henrard, Roberto Comparelli, Francesca Italiano, Alessandra Operamolla, Angela Agostiano, Gianluca M. Farinola, Massimo Trotta

University of Bari- Chemistry Department Institute of Physico-Chemical Processes – CNR Bari









Bari - Italy

## **Energy conversion in photosynthesis**





Rhodobacter sphaeroides R26

#### **Bacterial photosynthetic photoconverter**



Reaction centre of the purple bacterium *Rhodobacter sphaeroides* strain R26



## **Bacterial photosynthetic photoconverter**



Reaction centre of the purple bacterium *Rhodobacter sphaeroides* strain R26



### **Bacterial photosynthetic photoconverter**



#### The natural driving force



A. R. Vargas, S. Kaplang, Journal of Biological Chemistry, **1993**, 268, 19842–19850

#### **Bacterial photosynthetic photoconverter**

Reaction centre in detergent solution

P. Roth, Biochemistry, 1991, 30, 9403–9413 No vectorial charge separated generation



## **RC** inclusion in liposomes by MVT





#### Pros

- natural phospholipid able to self assemble in vescicle
- fluid bilayer

#### Cons

mechanical and chemical instability

**RC randomly oriented** 

L. Nagy, F. Milano, M. Trotta et al., Biochemistry ,2004, 43, 12913-12923



# Block coploymer: amphiphilic organic scaffoldings for biomimetic vescicles



C. LoPresti, H. Lomas et al., Journal of Materials Chemistry 2009, 19, 3576–3590.



# Block coploymer: amphiphilic organic scaffoldings for biomimetic vescicles



- tunable properties by suitable organic synthetic strategy
- possible modification of ending groups to obtain supramolecolar assemblies

C. Nardin, T. Hirt, J. Leukel, W. Meier, *Langmuir* **2000**, *16*, 1035-1041



C. Nardin, T. Hirt, J. Leukel, W. Meier, *Langmuir* **2000**, *16*, 1035-1041



#### State of the art (1)



Hyo-Jick Choi, et al. Nanotechnology 17 (2006) 1825–1830

Alexandra Graff, et al. Macromol. Chem. Phys. 2010, 211, 229–238 (Meyer's group)

COST ACTION TD1102 2nd PLENARY WORKSHOP, Istanbul, 8<sup>th</sup> – 11<sup>th</sup> April 2014 Francesco Milano

State of the art (2)

Polymersomes preparation by hydratation in water

Doping the vesicles with triton 0.5%

Addition of DM-solubilized protein

Detergent removal by bio-beads

Not incorporated protein removal by Sepharose 4B cromatography





Hyo-Jick Choi, et al. Nanotechnology 17 (2006) 1825–1830

COST ACTION TD1102 2nd PLENARY WORKSHOP, Istanbul, 8<sup>th</sup> – 11<sup>th</sup> April 2014 Francesco Milano

#### State of the art (2)

| Polymer<br>composition <sup>a)</sup>                       | $\overline{M}_{ m w}$ a) | Polymer composition <sup>b)</sup> |
|------------------------------------------------------------|--------------------------|-----------------------------------|
| $A_9B_{106}A_9-\textbf{1}$                                 | 9 4 8 6                  | 1.38                              |
| $A_{13}B_{62}A_{13}-\bm{2}$                                | 6938                     | 1.47                              |
| A <sub>15</sub> B <sub>62</sub> A <sub>15</sub>            | <mark>7 276</mark>       | 1.50                              |
| A <sub>21</sub> B <sub>69</sub> A <sub>21</sub> – 4        | <mark>8 816</mark>       | 2.00                              |
| A <sub>13</sub> B <sub>23</sub> A <sub>13</sub> – <b>5</b> | 4052                     | Insoluble in THF                  |
| $A_{65}B_{165}A_{65}-\bm{6}$                               | 23 372                   | 1.63                              |
| $A_{13}B_{110}A_{13}-\bm{7}$                               | 10462                    | 1.44                              |
| $A_{14}B_{110}A_{14} - 8$                                  | 10632                    | 1.36                              |



NADH/ferricyanide oxidoreductase activity measured at 410 nm and 25 8C. The reaction was started by an addition of NADH (represented by the arrow) to: complex I in solution (curve A), complex I incorporated in polymer vesicles (curve B), proteinfree vesicles solution (curve C).





M. Ollivon, S. Lesieur et al., BBA **2000**, 1508, 34–50



#### Detergent removal analysis by IR-ATR spectra analysis





#### **ABA polymersomes characterization**







#### **RC loaded in ABA polymersomes**

Absorbance spectrum of RC embedded in ABA polymerosomes





#### **RC loaded in ABA polymersomes**

Photochemical assay for checking protein integrity



Charge recombination reaction

$$DQ_AQ_B \xrightarrow{hv} D^+Q_AQ_B^-$$

K<sub>QD</sub>

in ABA  $k_{QD} = 1.8 \pm 0.1 \text{ s}^{-1}$ 

in detergent  $k_{QD} = 1.0 \pm 0.1 \ s^{-1}$ solution







100 % RC Dimers oriented towards the vescicle outer face or RC included into the external PMOXA block

**RC in PMOXA moiety** Sepharose 4B SEC elution profiles 0.5 HO RC in cholate 21 RC in ABA polymersomes 0.4 RC in PMOXA suspension RC concentration (µM) **PMOXA** 0.3 0.5 0.2 **RC** in **PMOXA** suspension 0.4 0.1 Absorbance (a. u.) 0.3 0.0 1.5 2.0 2.5 3.0 3.5 4.0 1.0 0.2 Volume (mL) 0.1 0.0 500 600 700 800 900 1000 400 Wavelength (nm)

COST ACTION TD1102 2nd PLENARY WORKSHOP, Istanbul, 8<sup>th</sup> – 11<sup>th</sup> April 2014 Francesco Milano





## **RC in PMOXA moiety**

Comparison between the RC charge recombination reaction in ABA and in PMOXA environment



Absorbance change at 865 nm (mOD)



### **RC photochemical activity**





## **Photocycle of quinone reduction**





#### **RC photochemical activity**

#### Cytochrome turn over in the RC photocycle

RC in **PMOXA** suspension

RC embedded in ABA polymersomes



Conditions: RC 1  $\mu$ M, cyt<sup>2+</sup> 10  $\mu$ M , dQ 20  $\mu$ M or dQ 20  $\mu$ M added in the bulk solution. Excitation at 550 nm under continuous illumination with red-filtered light



### **RC photochemical activity**

#### Cytochrome turn over in the RC photocycle

in liposomes





 $k_{dQ}^{confined} = 1.23 \pm 0.01 \text{ s}^{-1}$  $k_{dQ}^{free} = 0.90 \pm 0.01 \text{ s}^{-1}$ 



#### **RC time stability in ABA vs POPC vescicles**



#### Preserved RC integrity in ABA as in POPC vescicles









- First example of RC-ABA polymersomes made by MVT technique
- > 100% photoactive RC and unperturbed photoenzimatic activity in polymersomes
- Improved mechanical and chemical properties







**Localization of RC in the PMOXA palisade:** 

- ✓ Full interaction with cytochrome
- ✓ Same charge recombination rate
- ✓ Same cythochrome turnover rate

#### First example of detailed characterization of protein positioning







- Functionalization of ABA ending groups with opportune organic moieties to form supra-molecular assemblies
   Employing these functionalized RC-ABA vesicles as
  - building blocks for the design of hybrid bio-organic optoelectronic devices



## **Enhancing RC photoactivity**



## **Candidate for RC enhancement: AE800**



Mol. Wt.: 1160,39



Wavelength (nm)





# Characterizationof AE800 in Triton X-100 3%

✓ Fluorescence QY: **5.6%** 

✓ Fluorescence lifetime: 1.2 ns

✓ Molar extinction coefficient: 9800 M<sup>-1</sup>cm<sup>-1</sup>









## AE-800 bioconjugation to RC Charge recombination kinetics





# Antenna effect AE800: single wavelength



2.3 –fold increase



# Antenna effect AE800: white light

Charge separation with  $\lambda_{ex}$  < 668 nm, T=25%







Prof. Angela Agostiano Dr. Massimo Trotta Dr. Francesco Milano Dr. Roberto Comparelli Dr. Francesca Italiano

CNR-IPCF Bari (Italy)

University of Bari (Italy) Prof. Gianluca Farinola Dr. Roberta Ragni Dr. Alessandra Operamolla Simona la Gatta

> CNR-ICCOM Bari (Italy) Dr. Omar Hassan Omar

University of Namur (Belgium) John Henrard



Università degli Studi di Bari «Aldo Moro» Scuola di Dottorato di Ricerca in Scienze e Chimiche Molecolari

> COST Action CM0902 "Molecular machineries for ion translocation across biomembranes"

Ministero dell'Istruzione, dell'Università e della Ricerca

PRIN09 PRAM86 "Innovative Materials for Organic and Hybrid Photovoltaics"

